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In this paper, we study the structures of monomial Hopf algebras over a field of

positive characteristic. A necessary and sufficient condition for the monomial coalgebra Cd(n) to

admit Hopf structures is given here, and if it is the case, all graded Hopf structures on Cd(n)

are completely classified. Moreover, we construct a Hopf algebras filtration on Cd(n) which will

help us to discuss a conjecture posed by Andruskiewitsch and Schneider. Finally combined with a

theorem by Montgomery, we give the structure theorem for all monomial Hopf algebras.
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1 Introduction

There are several works to construct neither commutative nor cocommutative Hopf
algebras via quivers (see refs. [1–3]). An advantage for this construction is that a
natural basis consisting of paths is available, and one can relate the properties of a
quiver to the ones of the corresponding Hopf structures.

In ref. [1], the authors have classified all the finite-dimensional Hopf structures on a
monomial algebra, or equivalently, on a monomial coalgebra over a field of characteristic
zero and containing all roots of unity. As a continuation of ref. [1], we want to classify
Hopf structures on a monomial coalgebra when the characteristic of the field is positive.

On the one hand, we note that there do exist Hopf structures on a monomial coal-
gebra when the characteristic of the field is not zero (see Example 1). On the other
hand, we note that there exists an essential difference on the monomial Hopf structures
when the characteristic of the base field is different. For example, we can get examples
of finite-dimensional monomial (pointed) Hopf algebras which cannot be generated by
group-like and primitive elements when the characteristic of the base field is p while in
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the characteristic zero case, such examples do not exist any more (see sec. 3).

Just like that in ref. [1], our main task is to study the Hopf structures on Cd(n),
where Cd(n) is the sub-coalgebra of the path coalgebra kZc

n with the set of all paths
of length strictly smaller than d as a basis (see sec. 2). It turns out that the coalgebra
Cd(n) admits a Hopf structure if and only if there exist a d0-th primitive root of
unity q ∈ k with d0|n and a natural number r � 0 such that d = prd0, where p is the
characteristic of the base field k (Theorem 1). Consequently, we obtain a Hopf algebras
filtration for Cd(n), which will help us to discuss a conjecture raised by Andruskiewitsch
and Schneider. We give all the graded (with length grading) Hopf structures on Cd(n)
(see Theorem 2). As for the non-graded case, we cannot give them all. But we show
that there do exist non-graded structures on Cd(n) (see Example 2).

Next we study the monomial Hopf algebras, and show that for a given monomial
Hopf algebra, each indecomposable component as coalgebras is isomorphic to Cd(n)
for some n, d with d � 2 or the field k simultaneously (see Lemma 6). Finally, by a
theorem of Montgomery (see Theorem 3.2 in ref. [4]), we can describe the structures
of monomial Hopf algebras.

2 Preliminaries

Throughout this paper, k denotes a field of characteristic p. By an algebra we always
mean a finite-dimensional associative k-algebra with an identity element.

First we recall some basic facts, here we follow the definitions and notations in ref.
[1].

Quivers considered here are always finite. Given a quiver Q = (Q0, Q1) where Q0 is
the set of vertices and Q1 the set of arrows, denote by kQ, kQa and kQc the k-space
with the set of all paths as a basis in Q, the path algebra of Q, and the path coalgebra
of Q, respectively. Note that they are all graded with respect to the length grading.
For α ∈ Q1, let s(α) and t(α) denote respectively the starting and the terminating
vertices of α.

Recall that the comultiplication of the path coalgebra kQc is defined by

∆(p) =
∑

βα=p

β ⊗ α = αl · · ·α1 ⊗ s(α1) +
l−1∑

i=1

αl · · ·αi+1 ⊗ αi · · ·α1 + t(αl) ⊗ αl · · ·α1

for any path p = αl · · ·α1 with each αi ∈ Q1, for i ∈ {1, · · · , l}; and ε(p) = 0 for l � 1
and 1 if l = 0 (l = 0 means that p is a vertex). This is a pointed coalgebra, i.e. a
coalgebra over which all simple comodules are of one dimensional.

Let C be a coalgebra. The set of group-like elements is defined to be

G(C) := {c ∈ C|∆(c) = c ⊗ c, c �= 0}.
Obviously ε(c) = 1 for c ∈ G(C). For x, y ∈ G(C), denote by

Px,y(C) := {c ∈ C|∆(c) = c ⊗ x + y ⊗ c}
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the set of x, y-primitive elements in C. It is clear that ε(c) = 0 for c ∈ Px,y(C). Note
that k(x − y) ⊆ Px,y(C). An element c ∈ Px,y(C) is non-trivial if c /∈ k(x − y). Note
that G(kQc) = Q0, and

Lemma 1. See Lemma 1.1 in ref. [1]. Let Q be a quiver. For x, y ∈ Q0, we have
Px,y(kQc) = y(kQ1)x ⊕ k(x − y), where y(kQ1)x denotes the k-space spanned by all
arrows from x to y. In particular, there is a non-trivial x, y-primitive element in kQc

if and only if there is an arrow from x to y in Q.

An ideal I of kQa is admissible if JN ⊆ I ⊆ J2 for some positive integer N � 2,
where J is the ideal generated by all arrows. An algebra A is elementary if A/R ∼= kn

as algebras for some n, where R is the Jacobson radical of A. For an elementary algebra
A, there is a (unique) quiver Q and an admissible ideal I of kQa, such that A ∼= kQa/I

(see ref. [5]).

An algebra A is monomial if there exists an admissible ideal I generated by some
paths in Q such that A ∼= kQa/I. Dually, the authors of ref. [1] gave the definition of
monomial coalgebras.

Definition 1. A subcoalgebra C of kQc is called monomial provided that the
following conditions are satisfied:

(1) C contains all vertices and arrows in Q;

(2) C is contained in the subcoalgebra Cd(Q) := ⊕d−1
i=0 kQ(i) for some d � 2, where

kQ(i) is the k-space spanned by all paths of length i in Q;

(3) C has a basis consisting of paths.

Consider the following quiver

•e0 �����
• e1

α0

�• e2

α1

····• en−3
����

• en−2

αn−3

�
• en−1

αn−2

�
�

���
αn−1

We denote this quiver by Zn and call it the basic cycle of length n. Denote by pl
i

the path in Zn of length l starting at ei. Thus we have p0
i = ei and p1

i = αi.

For each n-th root of unity q ∈ k, Cibils and Rosso[2] have defined a graded Hopf
algebra structure kZn(q) (with the length grading ) on the path coalgebra kZc

n by

pl
i · pm

j = qjl

(
m + l

l

)

q

pl+m
i+j ,

and the antipode S mapping pl
i to (−1)lq−

l(l+1)
2 −ilpl

n−l−i, where
(
m+l

l

)
q

is the q-

analogue Gaussian binomial coefficient. Recall the definition
(
m+l

l

)
q

:= (l+m)!q
l!qm!q

, where
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l!q = 1q · 2q · · · lq and lq = 1−ql

1−q = 1 + q + · · · + ql−1.

Then, we always denote Cd(Zn) by Cd(n). That is, Cd(n) is the subcoalgebra of
kZc

n with the set of all paths of length strictly less than d as the basis.

Clearly, if
(
m+l

l

)
q

= 0 for all 0 < m, l < d and m+ l � d, then Cd(n) will be a graded
sub-Hopf algebra of kZn(q).

Example 1. Let q be a d0-th primitive root of unity with d0|n. Assume q ∈ k. In
the next section (Proposition 1), we will prove that if d = ptd0 for some nonnegative
integer t, then

(
d
l

)
q

= 0 for all 0 < l < d. By a standard identity about the Gaussian
binomial coefficients (see ref. [6]), say

(
n

k

)

q

=
(

n − 1
k − 1

)

q

+ qk

(
n − 1

k

)

q

,

we have
(

m+l
l

)
q

= 0 for all 0 < m, l < d and m + l � d. Therefore, by the discussion
above, Cptd0(n) forms a graded sub-Hopf algebra of kZn(q). We denote this Hopf
algebra by C(d0, t, n, q) or C(ptd0, n, q).

The following fact (see Lemma 2.3 in ref. [1]) shows the importance of Cd(n).

Lemma 2. Let C be an indecomposable monomial coalgebra. Then C is coFrobe-
nius (i.e. C∗ is Frobenius) if and only if C = k or C ∼= Cd(n) for some positive integers
n and d with d � 2.

The following lemma (Lemma 3.3 in ref. [1]) is needed in our proof of Theorem 1.

Lemma 3. Suppose that there is a Hopf algebra structure on Cd(n). Then up to
a Hopf algebra isomorphism, we have

pl
i · pm

j ≡ qjl

(
m + l

l

)

q

pl+m
i+j (mod Cl+m(n))

for 0 � i, j � n − 1, and for l, m � d − 1, where q ∈ k is an n-th root of unity.

3 Hopf structures on Cd(n) and Andruskiewitsch-Schneider conjecture

The aim of this section is to give an equivalent condition for Cd(n) to admit a Hopf
structure (Theorem 1), and then classify all the graded Hopf structures on Cd(n).
Moreover, we will construct a Hopf algebras filtration of Cd(n) which will help us to
discuss a conjecture posed by Andruskiewitsch and Schneider.

For a positive rational number x, we denote by [x] the largest natural number which
is not greater than x.

Let q be a d0-th primitive roots of unity. Note that
(
m+l

l

)
q

is a polynomial of q.

Thus
(
m+l

l

)
q

= 0 if and only if the multiplicity of q as a zero point is at least 1; if
and only if the multiplicity of q as a zero point of (l + m)!q is strictly greater than
the one of l!qm!q. Clearly, for any natural number n, nq = 0 if and only if d0|n, and

if n = pid0d, where p is coprime to d0d, then nq = (1−qpid0d)
(1−q) = (1−qd0d)pi

(1−q) , thus the
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multiplicity of q as a zero point of nq is pi. By the direct computation, one may show
that the multiplicity of q as a zero point in m!q is given by

[
m

d0

]
+ (p − 1)

[
m

pd0

]
+ (p2 − p)

[
m

p2d0

]
+ · · · + (pi − pi−1)

[
m

pid0

]
+ · · · ,

and hence we get the following lemma easily.

Lemma 4. Let q be a d0-th primitive root of unity. Then
(
m+l

l

)
q

= 0 if and only
if [

m + l

pid0

]
>

[
m

pid0

]
+

[
l

pid0

]

for some i � 0; if and only if
[
m + l

d0

]
+

[
m + l

pd0

]
+

[
m + l

p2d0

]
+ · · · +

[
m + l

pid0

]
+ · · ·

−(
[

m

d0

]
+

[
m

pd0

]
+

[
m

p2d0

]
+ · · · +

[
m

pid0

]
+ · · ·)

−(
[

l

d0

]
+

[
l

pd0

]
+

[
l

p2d0

]
+ · · · +

[
l

pid0

]
+ · · ·) > 0.

Lemma 5. Let m > 1 be a positive integer. For any 0 < n < m, set

Im,n = [m] +
[
m

p

]
+

[
m

p2

]
+ · · · +

[
m

pi

]
+ · · ·

− ([n] +
[
n

p

]
+

[
n

p2

]
+ · · · +

[
n

pi

]
+ · · ·)

− ([m − n] +
[
m − n

p

]
+

[
m − n

p2

]
+ · · · +

[
m − n

pi

]
+ · · ·).

Then Im,n > 0 for all 0 < n < m if and only if m = pt for some t � 1.

Proof. First note that
[

m
pi

]
−

[
n
pi

]
−

[
m−n

pi

]
� 0 for all i ∈ N .

“If Part:” To prove the conclusion, it is enough to find some j ∈ N such that[
m
pj

]
−

[
n
pj

]
−

[
m−n

pj

]
> 0. In fact, let j = t, 1 =

[
pt

pt

]
>

[
n
pt

]
+

[
m−n

pt

]
= 0 for all

0 < n < m. Thus, we prove the sufficiency.

“Only if Part:” Clearly, p � m. At first, we claim that p|m. Otherwise, assume
m = kp + r with k � 1 and 0 < r < p. Let n = kp, then it is easy to see that Im,n = 0
now. It is contradict to the assumption.

Thus, generally, let m = pr(alp
l + · · · + a1p + a0), where r � 1 and ai < p for

i = 0, 1, . . . , l. Let n = a0p
r and then m − n = pr(alp

l + · · · + a1p). Then, for
any 0 � j � r,

[
m
pj

]
= pr−j(alp

l + · · · + a1p + a0),
[

m−n
pj

]
= pr−j(alp

l + · · · + a1p)

and
[

n
pj

]
= a0p

r−j . This implies
[

m
pj

]
=

[
m−n

pj

]
+

[
n
pj

]
when j � r. If j > r, then

m = pj(alp
l−(j−r)+· · ·+aj−r)+aj−r−1p

j−1+· · ·+a0p
r. But, aj−r−1p

j−1+· · ·+a0p
r �

(p − 1)pj−1 + · · · + (p − 1)pr = pj − pr < pj . Thus
[

m
pj

]
= alp

l−(j−r) + · · · + aj−r ,[
m−n

pj

]
= alp

l−(j−r) + · · ·+ aj−r and
[

n
pj

]
= 0. This implies

[
m
pj

]
=

[
m−n

pj

]
+

[
n
pj

]
for
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j > r. Summarizing the above discussion, we have
[

m
pj

]
=

[
n
pj

]
+

[
m−n

pj

]
for all j and

thus Im,n = 0. It is contradict to the assumption. Therefore we know that a0 = 0 or
ai = 0 for all l � i � 1. We claim there is only one ai �= 0. In fact, if a0 �= 0, then the
conclusion above asserts ai = 0 for all l � i � 1. If a0 = 0, then repeating the above
discussion shows that a1 = 0 or ai = 0 for all l � i � 2. So, at last, we have a unique
ai such that m = aip

r+i.

If ai > 1, then we can write ai = l1 + l2 with l1l2 �= 0. Let n = l1p
r+i, then it is easy

to see that Im,n = 0. It is also contradict to the assumption. Thus m = pr+i and we
get the desired conclusion. �

With these preparations, we can give the following key proposition to our main result
(Theorem 1) of this section.

Proposition 1. Let q ∈ k be a d0-th primitive root of unity. Then
(

d
n

)
q

= 0 for
all 0 < n < d if and only if d = prd0 for some nonnegative integer r.

Proof. For simplicity, denote
[

m

d0

]
+

[
m

pd0

]
+

[
m

p2d0

]
+ · · · +

[
m

pid0

]
+ · · ·

−(
[

n

d0

]
+

[
n

pd0

]
+

[
n

p2d0

]
+ · · · +

[
n

pid0

]
+ · · ·)

−(
[
m − n

d0

]
+

[
m − n

pd0

]
+

[
m − n

p2d0

]
+ · · · +

[
m − n

pid0

]
+ · · ·)

by Im,n,q.

“If Part:” Similarly to the proof of Lemma 5, 1 =
[

prd0
prd0

]
>

[
n

prd0

]
+

[
prd0−n

prd0

]
= 0

for all 0 < n < prd0. That is to say, Id,n,q > 0 for all n < d and thus
(

d
n

)
q

= 0 for all
0 < n < d according to Lemma 4.

“Only if Part:” Clearly, d � d0. We claim d0|d. If not, then d = kd0 + r with k � 1
and 0 < r < d0. Let n = kd0, then it is easy to see that Id,n,q = 0 and thus

(
d
n

)
q
�= 0

by Lemma 4. It is contradict to the assumption.

Now we have d
d0

is a positive integer and denote it by m. If m = 1, then d = p0d0.
If m > 1, then Lemma 4 and Lemma 5 assert that m = pr and thus d = md0 = prd0

for some r � 1. Therefore, d = prd0 for some r � 0. �

Theorem 1. Cd(n) admits a Hopf algebra structure if and only if there exist a
d0-th primitive root of unity q ∈ k with d0|n and a natural number r � 0 such that
d = prd0.

Proof. “If Part:” By Proposition 1,
(

d
n

)
q

= 0 for all 0 < n < d. Now Example 1
implies the sufficiency.

“Only if Part:” If there is a Hopf structure on Cd(n), then Lemma 3 implies that
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there is an n-th root of unity q ∈ k such that

pl
i · pm

j ≡ qjl

(
m + l

l

)

q

pl+m
i+j (mod Cl+m(n)).

There is no harm to assume that q is a d0-th primitive root of unity. Since the length of
all paths in Cd(n) is strictly less than d,

(
m+l

l

)
q

= 0 for all 0 < l, m < d and m+ l � d.

In particular,
(

d
n

)
q

= 0 for all 0 < n < d. Thus by Proposition 1, d = prd0 for some
r � 0. �

Theorem 2. Any graded Hopf structure (with length grading) on Cd(n) is iso-
morphic to some C(d0, t, n, q), where C(d0, t, n, q) is given as in Example 1.

Proof. By Lemma 3 and the proof of Theorem 1, we see that any graded Hopf
structure (with the length grading) is isomorphic to C(d0, t, n, q) for some d0-th prim-
itive root of unity q with d0|n and d = ptd0. �

The following example will show that there exist non-graded Hopf structures on
Cd(n). But, we cannot obtain a complete classification in this case.

Example 2. We give a non-graded Hopf structure on Cpd0(n). Let q ∈ k be a
d0-th primitive root of unity with d0|n. As usual, we denote by pl

i the path in Zn of
length l staring at ei. For s1d0 + r1 < pd0 and s2d0 + r2 < pd0, we define the product
as follows:

if r1 + r2 � d0, then ps1d0+r1
i ps2d0+r2

j = 0;

if r1 + r2 < d0 and (s1 + s2)d0 + r1 + r2 < pd0, then

ps1d0+r1
i ps2d0+r2

j = qr1j

⎛

⎝ (s1 + s2)d0 + r1 + r2

s1d0 + r1

⎞

⎠

q

p
(s1+s2)d0+r1+r2
i+j ;

if r1 + r2 < d0 and (s1 + s2)d0 + r1 + r2 � pd0, then

ps1d0+r1
i ps2d0+r2

j =qr1j ((d0)!q)p((s1 + s2)d0 + r1 + r2)!q
(s1d0 + r1)!q(s2d0 + r2)!q

·

(p(s1+s2−p)d0+r1+r2
i+j − p

(s1+s2−p)d0+r1+r2
i+j+pd0

).

The antipode was given by

S(pl
i) := (−1)lq−

l(l+1)
2 −ilpl

n−l−i

for l � pd0. This is indeed a Hopf algebra with an identity element p0
0 = e0 and note

that it is not graded with respect to the length grading. We can see that, as an algebra,
it is generated by p0

1, p
1
0 and pd0

0 . An advantage of this construction is that we have a
natural basis. We can also get this Hopf algebra through generators and relations.

Let n, d0, p, q be as the above. We define A(n, d0, p, q) as follows. As an algebra, it
is generated by g, x, y with relations

gn = 1, xd0 = 0, yp = 1 − gpd0 , xg = qgx, yg = gy, yx = xy.
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Its comultiplication ∆, counit ε and the antipode S are given by

∆(g) = g ⊗ g, ∆(x) = x ⊗ 1 + g ⊗ x;

∆(y) = y ⊗ 1 + gd0 ⊗ y + Σd0−1
i=1

1
(d0 − i)!q(i)!q

gixd0−i ⊗ xi;

ε(g) = 1, ε(x) = ε(y) = 0;

S(g) = gn−1, S(x) = −gn−1x, S(y) = −gn−d0y.

Through a tedious but straightforward computation, we can prove A(n, d0, p, q) is in-
deed a Hopf algebra. We can also see that A(n, d0, p, q) ∼= Cpd0(n) as Hopf algebras by
g �→ p0

1, x �→ p1
0 and y �→ pd0

0 .

Let q ∈ k be a d0-th primitive root of unity with d0|n, then Theorem 1 implies that
there is a filtration of sub-Hopf algebras of kZn(q):

C(d0, n, q) ⊂ C(pd0, n, q) ⊂ C(p2d0, n, q) ⊂ · · · ⊂ C(ptd0, n, q) ⊂ · · · . (∗)
Noth that, if d0 = 1, C1(n) is indeed not a monomial coalgebra since it does not contain
any arrow. But it is a Hopf algebra and clearly isomorphic to a group algebra.

If d0 � 2, then Cd0(n) contains all vertices and arrows. By Lemma 1, all group-like
and primitive elements of kZn(q) lie in Cd0(n). Thus any path β whose length is no less
than d0 cannot be generated by the group-like and primitive elements since β /∈ Cd0(n).
Therefore, if d0 � 2, then for any t � 1, C(ptd0, n, q) cannot be generated by the group-
like and primitive elements as Hopf algebras. This supplies many counter-examples for
the following conjecture, which was posed by Andruskiewitsch and Schneider in ref.
[7], when the characteristic of the base field is positive.

Andruskiewitsch-Schneider Conjecture: Let H be a finite-dimensional pointed Hopf
algebra over an algebraically closed field of characteristic zero, then it is generated by
the group-like and primitive elements.

Let n be a positive integer and let q be a d0-th primitive root of unity with d0|n.
When the characteristic of k is zero, above Hopf algebras filtration (∗) will not happen.
In fact, in ref. [1], the authors have shown (see the proof of Theorem 3.1 of ref. [1])
that in the filtration (∗), only when d = d0, Cd(n) is closed under a multiplication, i.e.
C(d0, n, q) is the unique finite dimensional sub-Hopf algebra of kZn(q) in the filtration.
Thus we cannot deny the above conjecture since Cd0(n) is indeed generated by the
group-like and primitive elements (see Theorem 3.6 in ref. [1]).

4 On monomial Hopf algebras

The main aim of this section is to discuss the structures of monomial Hopf algebras.
Recall that a Hopf algebra is monomial if it is monomial as a coalgebra. We firstly
prove a result which is similar to Theorem 5.1 in ref. [1].

Lemma 6. Let C be a monomial coalgebra. Then C admits a Hopf algebra
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structure if and only if as a coalgebra, C ∼= k ⊕ · · · ⊕ k or

C ∼= Cd(n) ⊕ · · · ⊕ Cd(n)

for some d = prd0 � 2 with d0|n and there exists a d0-th primitive root of unity q ∈ k.

The proof of this lemma is also similar to that of Theorem 5.1 in ref. [1]. For
convenience to the readers, we write it down.

Proof. “If Part:” By assumption, we have C = C1 ⊕ · · · ⊕ Cl as a coalgebra,
where each Ci

∼= C1 as coalgebras for 1 � i � l and C1 admits a Hopf structure H1 by
Theorem 1. Then H1 ⊗ kG gives a Hopf structure on C, where G is any group of order
l. This gives the sufficiency.

“Only if Part:” Let C be a monomial coalgebra admitting a Hopf structure. Since
a finite-dimensional Hopf algebra is coFrobenius, it follows from Lemma 2 that as a
coalgebra C has the form C = C1⊕· · ·⊕Cl with each Ci indecomposable as a coalgebra,
and Ci = k or Ci = Cdi(ni) for some ni and di � 2.

We claim that if there exists some Ci = k, then Cj = k for all j. In fact, otherwise,
let Cj = Cd(n) for some j. Let α be an arrow in Cj from x to y, then α gives a
non-trivial x, y-primitive element in C. Let h be the unique group-like element in
Ci = k. Since the set G(C) of the group-like elements of C forms a group, it follows
that hx−1α is a non-trivial h, yhx−1-primitive element in C. But according to the
coalgebra decomposition C = C1 ⊕ · · · ⊕ Cl and Ci = k · h, C contains no non-trivial
h, gy-primitive elements. A contradiction.

Thus, by the above claim, if C �= k ⊕ · · · ⊕ k, then

C = Cd1(n1) ⊕ · · · ⊕ Cdl
(nl)

as coalgebras, with each di � 2. Assume that the identity element 1 of G(C) is
contained in the component C1 = Cd1(n1). It follows from a theorem of Montgomery
(see Theorem 3.2 in ref. [4]) that C1 is a sub-Hopf algebra of C, and that as coalgebras

g−1
i Cdi(ni) = Cdi(ni)g−1

i = Cd1(n1)

for any gi ∈ G(Cdi(ni)) and for each i. By comparing the numbers of the group-like
elements in Cdi(ni) and in Cd1(n1), we have ni = n1 = n for each i while by comparing
the k-dimensions, we see that di = d1 = d for each i. Now, since C1 = Cd(n) is a Hopf
algebra, by Theorem 1, there exists a d0-th primitive root of unity q ∈ k with d0|n and
r � 0 such that d = prd0. �

Theorem 3. Let H be a non-semisimple monomial Hopf algebra over k. Then
there exists a d0-th primitive root of unity q ∈ k with d0|n, r � 0 and d = prd0 � 2
such that

H ∼= Cd(n) ⊕ · · · ⊕ Cd(n)

as coalgebras; and
H ∼= C(d, n, q)#σk(G/N)
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as Hopf algebras, where G = G(H) and N = G(C(d, n, q)).

Proof. By Theorem 3.2 in ref. [4] and Lemma 6 above, we can get this conclusion
directly. �
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